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An elastic bounded anisotropic solid with an elastic inclusion is considered. An oscillating source acts on part of the boundary 
of the sofid and excites oscillations in it. Zero displacements are specified on the other part of the solid and zero forces on the 
remaining part. A variation in the shape of the surface of the solid and of the inclusion of continuous curvature is introduced 
and the problem of the theory of elasticity with respect to this variation is linearized. An algorithm for constructing integral 
representations for such linearized problems is described. The limiting properties of the linearized operators are investigated 
and special boundary integral equations of the anisotropic theory of elasticity are formulated, which relate the variations of the 
boundary strain and stress fields with the variations in the shape of the boundary surface. Examples are given of applications 
of these equations in geometrical inverse problems in which it is required to establish the unknown part of the body boundary 
or the shape of an elastic inclusion on the basis of information on the wave field on the part of the body surface accessible for 
observation. © 1998 Elsevier Science Ltd. All rights reserved. 

The problem of analysing the effect of small changes in the shape of the boundary on the wave fields 
in an elastic medium leads to the formulation of special boundary integral equations of the theory of 
elasticity [1-5]. The problem that is inverse to the problem of analysing the effect is to refine the a priori 
information on the shape of the unknown part of the boundary surface on the basis of data on the wave 
field and the part of the boundary of the medium accessible to observations (measurements), and is 
called the linearized inverse problem To solve it one needs to solve the direct problem using a system 
of classical boundary integral equations [6--8] and to change it to a system of special boundary integral 
equations. An iterative procedure of successive refinement of the shape of the required boundary enables 
non-linear inverse problems to be solved [2-5]. 

Suppose an elastic medium occupies a bounded region W, and an inclusion occupies a region 1, 21) C 
W. The boundaries of the solid F + = 0Wand of the inclusion I"- = 0Wwill be assumed to be surfaces 
of continuous curvature. We will assume that the inclusion V (1) and the external medium 1 ~°) = W~V (1) 
are uniform, and each of them is characterized by a tensor c (m) of elasticity constants and a density 
9(")(m = 0, 1) (see Fig. 1). The superscript m = 1 indicates that the quantity belongs to the medium 
of the inclusion, while the superscript m = 0 indicates that it belongs to the external medium. A time- 

v~ tr~engS~i~e PC*e;~'~vhi~hve~eCi~Se °s~lla~'~°ns inthefe~St~omediaUrmFa~F °n~het~Part °frttsh~'b°Un~d~,~.. 
" . "" ~ i ' g p  ~ -" P : p u. 

Suppose that the boundary on the part Fp is stress-free, while on Fu the displacement field is zero. We 
will assume that steady oscillation conditions exist in the elastic medium. 

After separating out the time factor e -/'°' the above boundary-value problem is described by the 
equations of motion 

V.¢y(m) +p(m)o~2u(rn)----O, x E V (m), m - 0 ,  i (1) 

the constitutive relations 

the boundary conditions 

G(m)=c(m)(DVu (m), x ~ V  I''), m=0,  1 (2) 

p(O)=p*; x E F ' ;  p(°)=0, xeF~';  u(°)=0, x~l"u + (3) 

tPrik2 Mat. Mekh. Vol. 62, No. 3, pp. 470-478, 1998. 

435 



436 S. A. Korenskii 

/ /  

. . . . . . ~  r ÷ 

Fig. 1. 

and the matching conditions at the inclusion boundary 

u¢O} =uO), p¢0) =pO), xeF-  (4) 

In the case of a cavity or an absolutely rigid inclusion it is sufficient to postulate a single boundary 
condition on V 1 

u c°) = 0, x ~ I"- (an absolutely rigid inclusion) 

pc0) = 0, x ~ 1-'- (a cavity) 

Here o is the stress tensor, u is the displacement vector, and p = o -  n is the traction vector on an area 
with normal n. We will also assume that there is friction in the medium, proportional to the velocity. 
In this case it is sufficient to replace co by c0~ in the equations of motion, where co~ = co + ie, E > 0. 

Using the fundamental solutions Ur [9] of Eqs (1) and (2) 

(m) (m) 4- (m) 2 (m) V.(C Q V U  r ) _ p  co U r =-er~(X, ~) ( 5 )  

x, ~R 3, r=l, 2, 3 

where er is the vector of a Cartesian basis, and 5(x, ~) is the three-dimensional Dirac delta function, 
the integral representations for the displacement vector in terms of the wave fields on F + and IT can 
be written in the form 

uc,.)(g)=S(.,)[u(m), pC,.), F~,,), ~1 ~V(,.), re=O, 1 

F (°)=~V (°)=F +UF-, F o)=~V o)=F- 

sCm) = (S~ ~), S~ "), S c~))3 

S:)[u, p, F, ~]=~ (p(x).~,, ,~, 
F 

= ~, (x, ~).n(x}, -..~, 

where S (m) is the Somigliana operator and n is the outward normal to F. 
We will introduce a variation of the shape of the surface of continuous curvature r as a scalar function 

v(x), x ~ F, v ~ CI(F), which satisfies the following conditions 

llv, sll'~l, ll~vll<~l, llkvll~l (6) 

Here II" II --- maxrl • I, (), s = s, V(), s is any unit vector in the tangential plane to F, × is the principal 
curvature of maximum modulus, and k is the maximum wave number. 

We will speci~ the surface I'- in a system of coordinates connected with I-'- by means of the shape 
variation function v 
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~ = r + d ,  d = v n ,  x ~ r -  (7) 

where r and F are the radius vectors of the surfaces 1-'- and I"-. Similarly we introduce a surface r "+ 
and additionally require that F and F÷ should be simple surfaces and should not have common 
points. 

Consider boundary-value problem (1)--(4) in regions bounded by the surfaces F+ and F-. All the 
quantities relating to this boundary-value problem will be denoted by tilde. We linearized the 
difference 

ac.)(~)_uc.)(~)=sC.)[ac.), be.), ~c~), ~]_sC.)[uC.), pC.), re.), ~] 

~ 9 ( ~ ) m V  (~), m = 0 ,  1 (8) 

The superscript m will henceforth be omitted. 
Suppose ( ~  I~) is an orthogonal system of coordinates on F. We will introduce the following notation: 

( )~ = ~( )/Oa, ( )1~ = ~( )/~1] are orthogonal vectors in the tangential plane and a =eo]l ra l, b = r~/I r131 
is an orthonormalized basis in the tangential plane. The Jacobian of the conversion of an element of 
the surface dl" into an element of the surface dF has the form 

J = [ ( I -  xlv)2(1-  g2v)2 + v 2, a+V 2, b +2V(V, a N - 2 v ,  aV ,  bM+V,  bL)+ 

"l'V2 [ V2, a ( N2 + M2 ) + 2V, a V, b M(Xt + ~2) + V2' b ( L2 + M2)]]~ 

where L,  M,  N,  a = L a  + Mb; n, b = Ma + Nb. 
Using the relations 

= (r+ d) a × ( r + d ) f ~ d t ~  = (1 + v2K)ndr'+[(ra × d)• -(r~ × d)a]dtxd~+ 

V 
+vO(ll V a II + II v13 II)dr' - (r a × d)dtxd~ = 7 rl3dr' 

V 

( )a = r a ' V ( ) ,  ( )l~ =rid'V( ) 

where K is the Gaussian of the curvature, and expansions of the form 

Y~.(x+vn, ~)=~;r(x,  ~ ) + ~ r ,  . (x ,  ~)v(x)+O(,v211) 

we will linearize the singular part of the operator S the argument and the subscript r will be omitted 
for brevity. We obtain 

f ti-Z.fidr" -= I t2 . (Z+Z, ,  v)-(ndl"+[(r a xd)[~ -(rf~ xd)a]atzd~)-= 
F 

t~- (Z- n + VZ(D(nn + aa + bb)v)dl" + 

f- 
-J 

F 

+J 
F 

=J 
F 

=J 
F 

t]. [(Y.- (r a x d))fj - (Z .(r13 x d)) a ]dout~J = 

a . ( Z . n + V . Y ~ v ) d r -  J ~ .Z.(r~ x d ) - a ~  .Y..(r, x a ) ) a c ~  = 
F 

~. Y~. ndl" + .[ (-pco2~ • U + ~, ~ .Z. a + ~, b "y"" b)vdl" (9) 
r 

~(x) = fi(x + v(x)n(x)) 

We have used the formula of integration by parts and the equations of motion V • Z = -pco2U, 
X ~ .  

To linearize the regular part of the operator S we will introduce the function/~ (x) = ~(x  + v)(x)n(x))J(x). 
We obtain 



438 S.A. Korenskii 

~. p. Ucl~-- I ~.UdI"+ I [~.U,.vdF (10) 
v F F 

We will introduce variations of the boundary fields by means of the formulae 

8 u = ~ - u ,  8 p = ~ - p ,  x ~ F  

We substitute (9) and (10) into (8). Apart from small higher-orders with respect to the quantities in 
(6), we obtain the following linearized integral representation 

~(~)- u(~)-= s[~iu, 

L = (L l, L 2, L3), 

ap, r, ~]+L[v, u, p, r, ~]+Ltv, nu, at,, r, ~ (11) 

LAy, u, p, r, ~l=J G,(x, ~)v(x)ar, 
F 

G r =p~2U.Ur+P.Ur,  n--U, a'~.r .a--u, b '~r 'b  

It follows from the uniqueness of the solution of boundary-value problem (1)--(4) that II ~5 II ~ 0 and 
II ~P II ---> 0 as II v II --> 0. We will neglect the last term on the right-hand side of (11). 

Consider the region AF~a neighbourhood of~(V f-1 10. We specify a pair of points ~ and ~ in a system 
of coordinates connected with F 

= x +'on(x), ~ = x + ('c + v(x))n(x) ,  ~, ~ ~ a r  

Note that if ~ ~ x e F, then ~ ~ x ~ F and vice versa. At these points we determine the functions 

We linearize the left-hand side of (11) in AF and take the limit as x ~ 0. We obtain 

5u(y)-u,  .(y)v(y)=lim(S[Su, 8p, F, ~]+L[v, u, p, F, ~1), y e F  (12) 

We will use the idea of an integral in the sense of the principal Cauchy value and represent the 
limits on the right-hand side of (12) in terms of singular integral and their sudden changes. We will 
choose for a sudden change notation which emphasizes its dependence on an integrand of the form 
~(x) , a (x ,  ~) 

Mv[u .A, F, y], y E F  

where 7 is the angle between the direction of the trend of (~, y) and n, and ~ satisfies the H61der 
conditions. 

Note the following simple property of the jumps 

Mv[u-A, a, F, y],=-M.t[u, a.A, r ,  y] (13) 

and similarly for b. 
The jumps of the Somigliana operator, due to the kernels Ur and Pr, are well known [61 and have the 

form 

M.t[o .U r, r ,  y]=0,  M ~ [ - v  "Pr, F, y ] f ~ Z V r ( y )  (14) 

M.t[SP.Ur-Su .P  r, F, y]= l/2~SUr(Y ), z=sgn(siny) (15) 

To calculate the jumps in the operator L we will specify another representation of the kernel G r Using 
the relations 

(~-~r ' V U ) ( ~  ( aa  "~" bb + nn) = Z r Q Vu 

(ft. VU,)O(aa + bb + nn) = ffQVU r 
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and the reciprocity theorem 

E r ® V u  = o O V U ,  

we will have 

ar=PeO2u. U,+u,  n ' P r - U  r, a'G'a-l.fr, b'G'b 

Using (13) and (14) we obtain 

M~[G,v, F, y] = - I ~ Z / l r ,  n (y)v(y) (16) 

We replace the approximate equation in (12) by the rigorous equation and take (15) and (16) into 
account. We obtain 

~ ( S u ( y ) - u ,  ,,(y)v(y))=S[Su, 5p, F, y]+L[v, u, p, F, y], y ~ F  (17) 

We will restore the superscript m = 0 and 1 in (17). In view of the conjugation conditions (4), 
corresponding conjugation conditions hold for the variation of the boundary fields on F- 

8u ¢°) = 8u tD, 8p t°J = 8p 0~, x ~ F- (18) 

Using (4) and (18) we introduce the functions 

u = u(O) = uO), p = ptO) = pO), x ~ I"- 

8u = 8u ~°) = 8u ( ° ,  8p = 8p ~°) = 8p ° ) ,  x E F -  

Taking the above notation into account we rewrite (17) in the form of the system 

s(o)[su(O), 8p(O), r+, y]+L(O)[v, u(O), p(O), l-,+, y]_S(O)[Su, 8p, r - ,  y ] -  

l~(Su(°)(y)-u,  (°)(y)v(y)), y ~ V + 
-L(°)[v, u, p, r - ,  Y l = l ~ ( S u ( y ) _ u ,  (19) 

(n°) (y)v(y)), y ~ l"- 

S(l)[ru, 8p, F-,  y]+L0)[v, u, p, F-, y ] = ~ ( S u ( y ) - u ,  °)(y)v(y)), y ~ F -  

By virtue of the boundary conditions (3) the variations of the boundary fields satisfy the following 
boundary conditions on F + 

8u C°) = o, x ~ F~+; ~p~o) = 0, x e r ~  u r* (20) 

and we can introduce the following boundary conditions 5s on F + 

J'Sp (°), x ~ ru + 
as = [Suc0~ ' x ~ r ;  ~, r" 

The linearized system of boundary integral equations (19), taking (20) into account relates the 
variations of the boundary fields 5s, 5u, 5/7 to the variations in the shape of the boundaries v. When 
solving the direct problem with specified shapes of the boundaries F + and F-, we can specify the function 
v and calculate the variations of the boundary fields. In this case the system obtained represents three 
vector complex linear equations in the three vector complex functions. Knowing the variations of the 
boundary fields we can calculate the differences of the displacement fields at any internal point of the 
body from (11). 

The special boundary integral equations (19) are of greatest interest when solving geometrical inverse 
problems, when it is required to establish an unknown boundary surface (or part of it), which we will 

+ 
denote b.y A, X C (on on T'- O F ) on the basis of information on the wave field on a part T of the + 
surface F accessible to observation. Hence, the formulation of the inverse boundary-value problem 
requires an additional boundary condition, namely 
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~ = f ,  x ~ T  (21) 

If we assume that a priori information is available on the required surface -~, expressed in the form 
of the known surface 

A c ( r -  u r +)(v(x) = o, ( r -  u r +) \ A = (f '-  w f'+) \ X) 

which is close to the required surface in the sense of (6), a search for the variation of the shape of the 
known surface is also the aim of the geometrical inverse problem. We will call this problem the linearized 
geometrical inverse problem. After solving the direct problem with a known shape of the boundaries 
1-'- and F ÷, the system of special boundary integral equations (19), using the additional boundary 
condition (21), is a system of linear integral equations in the unknown variations of the boundary fields 
and the variation of the shape, i.e. it solves the linearized geometrical inverse problem. 

We can suggest an approach to solving nonlinear geometrical inverse problems based on the use 
of a priori information on the shape of the required surface A, which is expressed by specifying the 
surface A (°) (not necessarily close to the required surface). Beginning with A(°)-, we construct a recurrent 
sequence of surfaces A (°), A 0), A (2) . . . . .  which "contracts" to the required shape of the surface if A (°) 
is correctly chosen. To transfer from A (i) to  A (i+1) it is sufficient to solve the linearized geometrical inverse 
problem and use representation (7) [2]. 

We will consider some particular examples of the formulation of special boundary integral equations. 
In all cases we will assume that the initial boundary condition is formulated on the part of the boundary 
of the body (T C rp)  that is stress-free. 

Problem 1. Suppose an elastic uniform medium occupies a spatially simply connected volume l~'(there 
is no defect). It is required to determine the shape of the clamped part of the boundary F+(A -- ~+) 
on the basis of information on the wave field of the displacement of the part of the boundary T = F 
(= F +) that is stress-free. 

We use the top equation in (19) and, omitting the superscript m --- 0, we obtain 

(Sp(x).U~(x, y)+v(x)p(x).U~, ,(x, y))dA-  
A(=r,, +) 

- I  8u(x)'Pr(X, y)dI'* = I (f(x)-u(x))'Pr(x, y)dr~+ 
r* T( = r~ ) 

[--1~2Ur, n(Y)V(y), Y ~ F~ +, 

"F'l l/2 ~U r ( y ), y ~ F* 
[l/2(fr(Y)-Ur(Y)), y e t 1  +, 

(22) 

Problem 2. Suppose, as in the previous problem, that there is no defect. It is required to determine 
the part of the boundary F-+(/~ C Fp) that is stress-free on the basis of information on the wave field 
of the displacements on the known part of the free surface T = F?+~ (= Fp~). 

Using the top equation in (19) and omitting the superscript m = 0 we obtain 

(Su(x). Pr(x, y)+v(x)Gr(x, y)lp= 0 )dA-  
A(cl~p) 

-~  8u(x)'Pr(x, y)dF*+ ~ 8p(x).Ur(x , y)dr,~= 
r* r,~ 

= J ( f (x) -  u(x))" Pr(x, y)dI"~ + 
T(=r~\A) 

J O, y e t ,  + 

~SUr(y), y ~ F* 

+l (8Ur(y)--Ur, n(y)V(Y)) Y ~ A  
I 

t l / 2 ( f r ( y )  - Ur(y)) ,  y ~ Fj + \ A 

(23) 
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Equations (22) and (23) can be simplified if we get rid of the additional unknowns by a special choice 
of the fundamental solutions. We will assume that the fundamental solutions satisfy Eq. (5) in W and 
the following boundary conditions 

U r = 0 ,  xEFu+; P~=0, x e F i , + u F "  (24) 

Since the special fundamental solutions in Wdiffer from the fundamental solutions R 3 (5) on a function 
that is regular in W, they retain the limit properties of the latter and (22) takes the form 

S v(x)u, n(x).Pr(x, y)dA=~ -~ur'  f n(y)v(y), y ~ F u  + 

A(=r,, +) [fr(Y) -- Ur(Y), y ~ F; 

Note that in this casep  • U,, n = u, ;," P,- Using the special fundamental solutions (24) we can convert 
system (23) to the following system 

0, y r,,* 
f v(x)Gr(x' Y~v=°dA= fr(y)-Ur(y), y~F; \ A  

A(cF~) 

The construction of  special fundamental solutions, which satisfy boundary conditions (24), is an inde- 
pendent problem, to solve which we need to formulate the corresponding boundary integral equations. 
Moreover, as a result of  the iterative procedure of successive approximations, A ('3 change, which involves 
recalculating the special fundamental solutions at each iteration. A compromise approach is better, 
namely, from the fundamental solutions the boundary conditions only need to be satisfied on a known 
part of the boundary F+\A. 

Problem 3. It is required to reconstruct the shape of an elastic inclusion F- in an elastic body 1~" on 
the basis of  information on the wave field of displacements on the part of  the surface F+(T C I~ )  that 
is stress-free. We will use the compromise version of choosing the fundamental solutions, when U (°) 
satisfy the boundary conditions only on the known external boundary F +, i.e. (24). 

In this case system (19) takes the form 

0, y e F~, + 
-S(°)[~u, 8p, I-'-, y] -L(°)[v ,  u, p, F- ,  y ]=  f(y)-u(y), y e T  (25) 

-S(m)[~u, 8p, F- ,  y]-L(n')[v, u, p, F- ,  y ]=  

=~(Su(y)-u, ~nm)(y)v(y)), yeF-,  m = 0 ,  1 

Note that in the case of an absolutely rigid inclusion or a cavity, in system (25) it is sufficient to put 
u and 5u or p and 8p, respectively, equal to zero; here it is not necessary to use the lower equation in 
(25) when m = 1. 

Notes 1. The linearized boundary integral equations obtained retain the singular order singularities present in 
the usual boundary integral equations. 

2. The solution of the above systems is an ill-posed problem. Together with these equations we can consider 
similar ones, but compiled for different frequencies to and different positions of the external load F*. Here, the 
unknown variations of the boundary fields will change, while the variations in the shape remain constant. Such an 
overdetermination is a favourable factor when solving ill-posed problems. 

3. Reformulation of the equations obtained for elastic media in the case of acoustic media leads to considerable 
simplifications. As far as the physical meaning of the wave fields is concerned, the Somigliana operator becomes 
the Helmholtz-Kirchhoff operator, and the kernel G of the operator L takes the form 

G = k2uU + U, nU, n - u, aU, a -  U, bU, b 

where k is the wave number and U is the corresponding acoustic potential. A cavity corresponds to an acoustically 
rigid surface, while an absolutely rigid inclusion corresponds to an acoustically soft surface. 

4. The technique described for constructing special boundary integral equations can be extended to the case 
when the volume Wis semi-bounded. In particular, the antiplane problem for an elastic half-space with a cylindrical 
inclusion was considered in [4, 5]; the special boundary integral equations obtained earlier (to reconstruct the shape 
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of the section of the inclusion boundary) are a special case of Eqs (25). Here the special fundamental solutions, 
which satisfy the boundary condition on the boundary of the half-space, have an analytical representation in terms 
of Hankel functions. The results of numerical experiments, which demonstrate the practicability of the proposed 
method of solving geometrical inverse problems, were given in [4, 5]. 

I wish to thank A. O. Vatul'yan for his interest. 
This research was supported by the Russian Foundation for Basic Research (95-01-00240a). 
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